ADMX (+ ABRACADABRA + CAST/IAXO)

トーク目的:海外のaxion探索現状と戦略のレビュー

取り上げる実験

- ADMX
- ABRACADABRA
- CAST/IAXO

探索原理と感度 高磁場 & 共振空洞 & 低温 **DM** Axion $\times B_{o}$ В $P_{\text{axion}} = 1.9 \times 10^{-22} \text{ W}\left(\frac{v}{1361}\right) \left(\frac{v}{6.8 \text{ T}}\right) \left(\frac{v}{0.4}\right) \left(\frac{v}{0.97}\right)$ $\times \left(\frac{\rho_a}{0.45 \,\mathrm{GeV \, cm^{-3}}}\right) \left(\frac{f}{650 \,\mathrm{MHz}}\right) \left(\frac{Q}{50000}\right). \quad (1)$

 $SNR = (P_{axion}/kT_{system})(t/b)^{\frac{1}{2}}$

Axion Dark Matter eXperiment (ADMX)

1996年にLLNLで開始。現在はワシントン大に移設。 2018年にDFSZモデルに到達。30人規模の実験。 (Washington, Florida, Berkeley, LLNL, LANL, PNNL, Fermilab,…)

2本の棒で共振周波数を調整

Microstrip SQUID Amplifier (MSA)

GHzまで対応

ADMX D-

	Run year	探索領域 (DFSZ感度)	
	2017	2.7-2.8µeV	0.65-0.68GHz
	2018	2.8-3.3µeV	0.68-0.8GHz
、るで、こので、こので、こので、こので、こので、こので、こので、こので、こので、この	2019	3.3-5µeV	0.8-1.3GHz
	2020-	6-9µeV	1.5-2.2GHz
	202X-	10-40µeV	2.5-10GHz
		40-µeV	10GHz

ADMXの40µeV以上の戦略

課題1:

Standard Quantum Limit (SQL)

増幅は強度と位相の同時測定: $\Delta n \cdot \Delta \phi > 1/2$

SQL bkg. ~ $\hbar f/k_B \propto f$

信号量 $\propto V \sim f^{-3}$

→ SQLは高質量でより深刻に

解)単一光子検出:特にQubit → 位相のランダム化と 引き換えに SQL 回避

課題2:信号の統計ゆらぎ SQL回避後の唯一のbkg.

Qubitを用いたマイクロ波単光子検出

調和振動子+二準位の系 (cavity + qubitなど)

Jaynes-Cummings Hamiltonian

量子コンピュータの制御技術でもある。 Fermilab等がAxion探索への応用の基礎研究(talk)

- 光子の存在が、qubitの遷移周波数をずらす。
- 測定で光子が壊れない。(Quantum Non-Demolition)
 - → 複数回の測定で測定効率を上げられる。

日本も最先端の技術を持つ。 先端研,中村氏他: 2018, Nature physics letter 理研, 猪俣氏他 : 2016, Nature communication

キャビティ種々技術 (10µeV-)

Cavities #	Res freq. MHz	Tuning range MHz	Tuning range μeV
1	575	402-575	1.7-2.4
1	575	575-908	2.4-3.8
2	897	897-1417	3.7-5.9
4	1207	1207-1907	5-7.9
8	1899	1899-3001	7.8-12
16	2959	2959-4675	12-19
32	3983	3983-6293	16-26

- R&D platforms for higher frequency ulletsearches

4/16/2019

Future-Higher Frequency Searches, >4 GHz

Difficult to design systems with a large volume and small tuning structures

"Pizza" Cavity (U. Florida)

Photonic Bandgap(LLNL)

APS Apr2019 slidesより

 $\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t} \right)$

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}} \cos(m_a t)} \mathbf{B}_0$

 $|\Phi_a|^2 = g_{a\gamma\gamma}^2 \rho_{\rm DM} V^2 \mathcal{G}^2 B_{\rm max}^2 \equiv A$

2016年提案、2018年に初結果 MIT主導,総勢15人のコラボレーター

冷凍機(運転時1K)

磁場シールドノ (すずコーティング)

トロイド磁石 NbTi,1T

検出用ループ

冷凍機上部 から紐で吊る 振動分離のため

較正用ループ

6cm

ABRA-10cm (2018) - 1T, ϕ ~10cm

ABRA-10cm改良版 (2019)

/Ge

 $\left[1\right]$

- 寄生インピーダンス除去
- 振動抑制
- → CAST感度を更新予定

ABRA-40cm

- 5T, φ~40cm
- Readout改善: $m_a < 1 \mu eV$
- Resonant readoutも実装

ABRA-1m

- φ~1m
- SQL突破が必須

検出原理

 $\epsilon = \epsilon_d \epsilon_o \epsilon_t$:量子効率,集光効率,運転効率

CAST@CERN

Baby-IAXO@DESY?

	CAST	Baby-IAXO
期間	-2015	2023 - 202X (予定)
長さ L	9m	20m
断面積 A	15cm^2	2800cm^2
磁場B	9T	5 T
テレスコープ	—	開発中
X線検出器	Micromegas	左に同じ (option有り
感度	$ g_{a\gamma} < 7 \times 10^{-11} [\text{GeV}^{-1}]$	$ g_{a\gamma} < 2 \times 10^{-11} [\text{GeV}^{-1}]$

<u>Slides@ European Strategy Granada</u>

与り)

IAXO

IAXO -2030 (予定) 20m 2800cm^2 **5**T 左に同じ 左に同じ $|g_{a\gamma}| < 4 \times 10^{-12} [\text{GeV}^{-1}]$

Inclination System Support Frame Flexible Lines Rotating Disk

Rotation System

まとめ

ADMX@UW

- DM QCD axionの探索に唯一成功
- <40µeV領域の独走を狙う
- >40µeV領域の技術開発中

ABRACADABRA@MIT

- sub-µeV axion 急先鋒
- 今年にCAST Limit 超えを狙う

CAST/IAXO@CERN/DESY?

- solar axionの市場独占中
- baby-IAXO/IAXOで 堅実に探索範囲を拡大予定

hep-exのヒット件数/年

紹介した実験はほんの一部

Axion + qubit detector e high-Q cavity 1.0 0.8 Probability 3D $Im(\alpha)$ 0.6 × 0 cavity 0.4 _____ 0.2 $-\frac{2}{\pi}$ 0.0 2 -2 0 0 Transmon $Re(\alpha)$ h "Pizza" Cavity (U. Florida) g など $\frac{2}{\pi}$ 1.0 θ Pump 0.8 Probability $Im(\alpha)$ 0.6 Ċ 0 0.4 0.2 Heterodyne $-\frac{2}{\pi}$ 0.0 detector 2 0 0 Flux-driven JPA $Re(\alpha)$

quantum efficiency 84%

CAST high mass limit

$$P_{a \to \gamma} = \left(\frac{g_{a\gamma}BL}{2}\right)^2 \left(\frac{\sin\left(\frac{qL}{2}\right)}{\frac{qL}{2}}\right)$$

$$q = \left| \frac{m_{\gamma}^2 - m_a^2}{2E_a} \right| \quad 希t$$

 $\frac{qL}{\sim} \left(\frac{g_{a\gamma}BL}{2}\right)^{2}$ sinx-x (x-0)

ガス圧微調整でeffectiveにm,>0

BabyIAXO optics

- 2 detection lines in BabyIAXO
- Optics:
 - IAXO Custom segmented-glass optics and flight spare XMM optics from ESA
 - **Prototyping + physics** considerations
 - Risk reduction for final IAXO segmented-glass optics
 - XMM optics specs very close to IAXO optics design
 - ESA preliminary support to the use of XMM optics in BabyIAXO
 - (2 XMM optics exist)

70 cm

10 m

ESSP Granada, 14-May-2019

Igor G. Irastorza

BabyIAXO magnet

"Common coil" configuration chosen

- Minimal risk: conservative design choices
- Cost-effective: Best use of existing infrastructure (tooling) at CERN
- Prototyping character: winding layout very close to that of IAXO toroidal design.

BabyIAXO detectors

• Detectors (baseline option):

- 2 "microbulk" Micromegas detectors
- "Discovery detectors" (priority to low background)
- Experience in CAST
- Low background capability, radiopurity, shielding.

- Beyond baseline:
 - "high precision" detectors (post-discovery?)
 - Better threshold & resolution
 - 2 low-background Micromegas setups
 - R&D in several technologies: GridPix, MMCs, TES, NTD, SSD.

ESSP Granada, 14-May-2019

Igor G. Irastorza

BabyIAXO platform & infrastructure

- Existing CTA MST mount matches
 BabyIAXO specs remarkably well
- HERA South hall: perfect site for BabyIAXO

Igor G. Irastorza

45

diameter 20m ttform (ca. 5m high)

LPS- I	ALPS-II	JURA
	5.3T	13T
	189m	960m
	$10^{-11}[\text{GeV}^{-1}]$	10 ⁻¹² [GeV ⁻¹]
v.org/abs/1302.5647	https://arxiv.org/abs/1302.5647	