Dark-matter Axion Search using Quantum Coherence Amplification Mechanism

Particle Physics/ Cosmology(5) : M. Yoshimura, K. Yoshimura, N. Sasao, T. Masuda, T. Hiraki

Nuclear Physics(1): H. Yoshimi.

Quantum Electronics/ Atomic Physics(4) : S. Uetake, H. Hara, K. Imamura, Y. Imai

Quantum Chemistry(1): Y. Miyamoto

+students (8)

Noboru Sasao(笹尾 登)

Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan

Waseda

Recent papers

Eur Phys. I.C. (2018) 78-040

THE EUDODEAN

|n>

It is crucial to devise a clever method of PSR background rejection for a realistic experimental proposal.

N. Sasao^a, M. Yoshimura^b

Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan

has to either invent a more <u>powerful method of back-</u> ground reduction (as for $p-H_2$ a nearly background-free environment is required), or search for other atomic or molecular candidates with even larger signal rates.

Outline

• What is axion?: Physics motivation

Skip entirely!!!

- Amplification by coherence: Proof-of-principle experiment by PSR process
- Cosmic Axion search with atoms/molecules:
- Conclusion

Outline

• What is axion?: Physics motivation

 Amplification by coherence: Proof-of-principle experiment by PSR process

• Cosmic Axion search with atoms/molecules:

Conclusion

Amplification by coherence among atoms

- Super-Radiance a la Dicke
 - De

De-excitation via multi-particle emission

$$R \propto \left| \sum_{m=1}^{N_T} \exp\left(i(\vec{k}_{\nu} + \vec{k}_{\bar{\nu}} + \vec{k}_{\gamma}) \ \vec{x}_m \right) M(\vec{x}_m) \right|^2 \propto N_T^2 \quad \left[\because M(\vec{x}_m) = M(0), \ \vec{k}_{\nu} + \vec{k}_{\bar{\nu}} + \vec{k}_{\gamma} = 0 \right]$$

Waseda

De-excitation via single photon emission

$$R \propto \left| \sum_{i=1}^{N_T} \operatorname{Exp}\left(i \vec{k}_{\gamma} \cdot \vec{x}_m \right) M(\vec{x}_m) \right|^2 \propto N_T^2 \quad \left[\because M(\vec{x}_m) = M(0), | \text{target size} | < \lambda \right]$$

 $|e\rangle \rightarrow |g\rangle + \gamma \nu \nu$

Ba SR exp't @ Okayama

Effects of Initial Spatial Phase

• General conditions of amplification;

$$R \propto \left| \sum_{m=0}^{N_T} \exp\left(i(\vec{k}_v + \vec{k}_{\gamma 1} + \vec{k}_{\gamma 2}) \ \vec{x}_m \right) M(\vec{x}_m) \right|^2 \propto N_T^2$$

if $M(\vec{x}_m) = M(0) \exp\left(-i\vec{P}_{eg} \ \vec{x}_m\right) \rightarrow \vec{k}_v + \vec{k}_{\gamma 1} + \vec{k}_{\gamma 2} = \vec{P}_{eg}$

- Spatial phase Peg can be controlled;
 - Raman excitation:

$$E_{eg} = \omega_1 - \omega_2 \quad \& \quad P_{eg} = k_1 - k_2$$

• Ladder excitation:

$$E_{eg} = \omega_1 + \omega_2 \& P_{eg} = k_1 + k_2 \quad \text{(co-propagating)}$$
$$E_{eg} = \omega_1 + \omega_2 \& P_{eg} = k_1 - k_2 \quad \text{(counter-propagating)}$$

Experimental proof of macroscopic coherent amplification

- PSR (paired super-radiance)
 - \bullet QED process where $\nu\text{-pair}$ is replaced with a photon.
 - A pair of strong light pulses (SR) will be emitted.

"Dynamics of two-photon paired superradiance", M. Yoshimura, N. S, and M. Tanaka, PHYSICAL REVIEW A 86, 013812 (2012) "Externally triggered coherent two-photon emission from hydrogen molecules", Yuki Miyamoto et. al. Prog. Theor. Exp. Phys. **2015**, 081C01 (2015)

PSR experiments

- Para-hydrogen molecule (Spin=0)
 - Vibrational level (v=1) to ground level (v=0).
 - E1 forbidden.
 - Small 2-photon emission rate:

 $\Gamma \approx 1/2 \times 10^{12}$ sec

- Excitation scheme
 - Raman (co-propagating)
 - Ladder (counter-propagating)

Driving laser: 5 mJ/pulse, ~10nsec fwhm Tigger laser: 150 uJ/pulse, ~2nsec fwhm

Experimental setup

H₂ gas cell (15 cm long)

L-N₂ Cryostat

Observation of Raman sidebands

- 13 sidebands observed (λ =192 4662nm)
- Evidence for large coherence

2019-July-06

Waseda

Degree of coherence

• Maxwell-Bloch eq.

$$\begin{split} \frac{\partial \rho_{gg}}{\partial \tau} &= i \Big(\Omega_{ge} \rho_{eg} - \Omega_{eg} \rho_{ge} \Big) + \gamma_1 \rho_{gg}, \\ \frac{\partial \rho_{ee}}{\partial \tau} &= i \Big(\Omega_{eg} \rho_{ge} - \Omega_{ge} \rho_{eg} \Big) - \gamma_1 \rho_{ee}, \\ \frac{\partial \rho_{ge}}{\partial \tau} &= i \Big(\Omega_{gg} - \Omega_{ee} + \delta \Big) \rho_{ge} + i \Omega_{ge} \Big(\rho_{ee} - \rho_{gg} \Big) - \gamma_2 \rho_{ge}, \\ \frac{\partial E_q}{\partial \xi} &= \frac{i \omega_q n}{2c} \Big\{ \Big(\rho_{gg} \alpha_{gg}^{(q)} + \rho_{ee} \alpha_{ee}^{(q)} \Big) E_q + \rho_{eg} \alpha_{eg}^{(q-1)} E_{q-1} + \rho_{ge} \alpha_{ge}^{(q)} E_{q+1} \Big\}, \\ \frac{\partial E_p}{\partial \xi} &= \frac{i \omega_p n}{2c} \Big\{ \Big(\rho_{gg} \alpha_{gg}^{(p)} + \rho_{ee} \alpha_{ee}^{(p)} \Big) E_p + \rho_{eg} \alpha_{ge}^{(p\overline{p})} E_{\overline{p}}^* \Big\}. \end{split}$$

• Coherence estimated by simulation:

Observation of two-photon process

Recent developments on PSR (1)

• Solid vs gas pH2

trigger laser injected after pump laser

Waseda

Recent developments on PSR (2)

• Initial spatial phase imprinted to atomic system.

Outline

• What is axion?: Physics motivation

• Amplification by coherence: Proof-of-principle experiment by PSR process

• Cosmic Axion search with atoms/molecules:

Conclusion

Basic process of interests

• Basic process of interest:

$$|e\rangle + m_a \rightarrow |g\rangle + \gamma_t + \gamma_s$$

Principle of experiments

- Prepare coherently-excited states |e> by pump laser(s).
- Axion decays into 2γ in an external magnetic fields B_{ext} .
- Virtual photon is absorbed by |e>.
- Inject trigger laser (γ_t) with angle w.r.t. pump laser(s).
- Detect signal photon (γ_s) .

 $a_G \rightarrow \gamma_v + "\gamma"$

We use BaF as a target

- Electronic structure:
 - ${}^{2}\Sigma:L_{7}=0,S_{7}=1/2$
 - ${}^{2}\Pi:L_{7}=1,S_{7}=1/2$
- Zeeman properties:
 - ${}^{2}\Pi_{1/2}$: no magnetic dipole moment
 - ${}^{2}\Sigma \& {}^{2}\Pi_{3/2}$: magnetic dipole moment ~ μ_{B}

- Rotational structure:
 - A~ spin-orbit interaction energy
 - B~ rotational energy (B < A)

 $\mu_B(g_s\vec{S}+g_l\vec{L})$

Waseda

 $\mu_B \simeq 57.88 \ \mu eV/T$

BaF electronic state energy curves

 $C^2\Pi$

3.5

17

Zeeman splitting of BaF states

 \boxtimes 4: Zeeman energy of $X^2\Sigma$ state (N = 0, 1, 2).

⊠ 5: Zeeman energy of $X^2\Sigma$ state. Expanded for N = 1.

⊠ 8: Zeeman energy of $A^2\Pi_{3/2}$ state of BaF.Possible Axion transition levels are indicated by bigger solid circles.

 \boxtimes 9: The same figure with \boxtimes 8 for MgF.

Actual states to be used

•	The	mass	of	axion	in	search:

- $E(|i\rangle)-E(|e\rangle)$ under B_{ext}
- $m_a \sim 25 \text{ meV}$ (in this example)

Forget for a moment:
$$\Omega_{ax} \approx \left(\frac{6 \, [\mu eV]}{m_a}\right)$$

	States	<i>r</i>	Γ_e	Lifetime	Rotational quantum $\#$
	Unit	cm^{-1}	(eV)	ns	and Parity
$ g\rangle$	$X^2\Sigma$	0.	(0.0)	-	$J = \frac{1}{2}, M_J = -\frac{1}{2}, (+)$
j angle	$A^2\Pi_{1/2}$	11646.9	(1.44403)	56.0	$J = \frac{3}{2}, M_J = -\frac{1}{2}, (-)$
$ e\rangle$	$C^2 \Pi_{1/2}$	19998.2	(2.47946)	23.8	$J = \frac{3}{2}, M_J = +\frac{1}{2}, (-)$
$ i\rangle$	$C^2 \Pi_{3/2}$	20197.0	(2.50411)	23.5	$J = \frac{5}{2}, M_J = +\frac{1}{2}, (+)$

Experimental Layout

• 3 major components:

- Laser system
- BaF target in pH₂ matrix
- IR detector

• Trigger laser

• injected with angle w.r.t pump to satisfy macro-coherent amplification conditions.

$$(\omega_{eg} + m_a = \omega_t + \omega_s)$$
$$(\vec{k}_{eg} = \vec{k}_t + \vec{k}_s)$$

Axion absorption

Laser and BaF target

表 2: BaF laser specifications

Name	Pump	Trigger
wavelength	$500 \ \mathrm{nm}$	$1170~\mathrm{nm}$
intensity	$1 \mathrm{~mJ/pulse}$	$10 \mathrm{~mJ/pulse}$
linewidth	$100 \mathrm{~MHz}$	$100 \mathrm{~MHz}$
pulse width	$10~{\rm ns}/10~{\rm Hz}$	$10~{\rm ns}/10~{\rm Hz}$

IR detector : APD with bandpass filter or spectrometer

表 3: BaF target in pH_2 matrix. Note: length and diameter represent those passed by lasers.

Item	value	Item	value
Temp.	4 K	Doping	$100 \mathrm{~ppm}$
Length	$5 \mathrm{mm}$	Diameter	$1 \mathrm{mm}$
Volume	$0.005~{ m cm}^3$	# of BaF	$1.3 imes 10^{16}$

Signal counts

$$\frac{d\Gamma_{ax}}{d\Omega_s} = \frac{\rho_{eg}^2 N_T^2 (4\pi\alpha)^2}{2(4\pi)^2} \rho_G a_B^6 \left(\frac{G_a^2 \omega_s^3}{m_a^2}\right) \frac{|eE_t(0)|^2 B_{ext}^2}{|\omega_{ei} + \omega_t - i\Gamma_{ei}|^2 |\omega_{ij} + m_a - i\Gamma_{ij}|^2} \mathcal{A}(\Omega_s)$$

 $\rho_{eg} : \text{coherence}$ $N_T : \text{number of target molecules}$ $\rho_G : \text{dark matter density}$ $a_B : \text{Bohr radius}$ $E_t : \text{tigger laser field}$ $\omega_p \ (p = e, g, i, j, s, t) : \text{energy of p}$ $\omega_{pq} \equiv \omega_p \ -\omega_q$ $\Gamma_{pq} : \text{resonace + laser width}$ $A(\Omega_s) : \text{geometrical acceptance}$

B_{ext}=1 T

ρ_{eg} : coherence

 $A(\Omega_s)$: geometrical acceptance

Acceptance $A \simeq 10^{-6}$

 $\Delta m_a \sim \pm 0.001 \text{ meV}$

Rate enhancement factors

• Large axion number density

$$\rho_G = 0.4 \text{ GeV/cm}^3 \rightarrow 10^{13} / \text{cm}^3 (m_a = 40 \mu \text{eV})$$

• Macro-coherent amplification.

$$N_{T} = 10^{16}$$

Strong magnetic field

Bext = 1 T

- Near resonance condition at axion absorption vertex
 - Energy denominator:

$$\frac{1}{E_{ei} - m_a - i\Gamma_i} \to \frac{1}{\Gamma_i}$$

The biggest background: black-body

Atoms absorb black-body photons.

$$S/N \equiv \frac{d\Gamma_{ax}}{d\Omega_s} / \frac{d\Gamma_{bg}}{d\Omega_s} = \frac{2\rho_G}{u_{bb}\Delta\omega_{bg}} \frac{G_a^2 B_{ext}^2}{m_a^2} \frac{\mathcal{A}}{\mathcal{A}_{bg}} \simeq \frac{0.5 \times 10^{-23} \text{ eV/cm}^3}{u_{bb}\Delta\omega_{bg}} \frac{\mathcal{A}}{\mathcal{A}_{bg}}$$

- The second biggest background:
 - Dark count of APD is negligible.
 - 100 Hz x ϵ_{dty} =10⁻³ Hz

The sensitivity of the experiment can be calibrated by observing black-body spectrum.

Velocity dispersion and wind direction

- Velocity dispersion σ_v :
 - Axions have been virialized during a large-scale formation.

Search sensitivity by this experiment

Summary for axion search

- New method of cosmic axion search.
 - Amplification by macroscopic coherence is KEY.
 - Use Zeeman-tunable molecular states
 - Large counting rate is expected for wide search region
 - Experimental sensitivity can be proved by b.b. "calibration" photons
- •Road map
 - Pilot experiment with BaF ${}^{2}\Pi_{1/2}$ as $|e\rangle$
 - Go to the smaller $m_a (\sim 1 \text{ meV})^2$ with $^2\Pi_{3/2}$ as $|e\rangle$
 - Need a cryostat of lower temperature (250 mK) and stronger magnet (>10T)
 - Better target (crystal?) is needed to go below 1 meV.

Thank you for your attention!

SPAN collaboration

Hideaki Hara¹, Takahiro Hiraki¹, Kei Imamura¹, Takahiko Masuda¹, Yuki Miyamoto¹, Noboru Sasao¹, Yoshitarou Takaesu¹, Minoru Tanaka², Koji Tsumura³, Satoshi Uetake¹, Akihiro Yoshimi¹, Koji Yoshimura¹, Motohiko Yoshimura¹

Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
 Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
 Department of Physics, Kyoto University, Kyoto 606-8052, Japan